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Critical phenomena in d-dimensional ferromagnetic spherical models on 
hypercubic lattices with free surfaces are studied. The surface specific heat 
and surface susceptibihties are obtained. The exponents characterizing the 
divergence of these surface quantities at the bulk critical temperature are 
found to satisfy recently proposed scaling relations. The variation of the 
susceptibility with distance from the surface is also discussed. The author's 
recent scaling theory for surface properties is investigated in detail, and 
found to give an exact representation for the free energ7 of a three-dimen- 
sional spherical model of finite thickness in finite bulk and surface magnetic 
fields. A scaling form for the surface free energy is derived. 

KEY WORDS: Critical phenomena; spherical model; surface properties; 
scaling. 

1. I N T R O D U C T I O N  

The effect of  a free surface on  the critical behavior  of magnet ic  systems has 

been discussed recently by several authors.  (1-11) In  the presence of a surface 
it is necessary to in t roduce (1-~ several new exponents  to characterize the 

behavior  of  the surface the rmodynamic  properties in the critical region. 
M a n y  of these " su r f ace"  exponents  have been determined either analy-  
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tically (5-7~ or from exact series expansions (1'a'8,9~ for several models and 
within mean-field theory. (a,l~ 

Attempts have also been made (~-4~ to develop systematic scaling theories 
for surface critical phenomena based on general concepts. These arguments 
yield new scaling laws, which relate the various surface exponents to each 
other and/or the standard bulk exponents. These scaling relations are well 
satisfied (3,4~ within mean-field theory and by the exponents of the two- 
dimensional Ising model, many of which are known exactly. (5'6~ For the 
three-dimensional Ising model the exponents are only available through the 
numerical extrapolation of exact series expansions. (~,a,9~ However, the avail- 
able evidence appears to confirm the scaling predictions. (9'11~ For  more 
"realist ic" magnetic models, such as the Heisenberg model, the available 
data (8~ are so limited that no definite conclusions can yet be drawn. Since 
bulk scaling (z2~ appears to be valid for such models, one would also hope 
that surface scaling is also applicable to the Heisenberg model and ultimately 
to real magnetic systems, where the experimental investigation of surface 
effects is in its infancy. (~a~ 

In this paper we extend an earlier analysis (v of finite-size and surface 
effects on the critical behavior of the spherical model, (14~ to discuss the 
response to a magnetic field applied locally to the surface. Aspects of this 
problem have been discussed for the Ising model in two dimensions by 
McCoy and Wu (a~,a and, more recently, in three dimensions by Binder and 
Hohenberg (3~ and Barber. c9~ Our aim will be twofold; first, to calculate, for 
their own intrinsic interest, various surface properties of the spherical model, 
and second, to investigate the validity of scaling. We will show that for the 
spherical model it is in fact possible to analytically demonstrate the correct- 
ness of the scaling hypotheses and to calculate the appropriate scaling 
functions. 

Our arguments are arranged as follows. In Section 2 we review the basic 
results of the earlier analysis (7~ and extend the formulation to include a 
surface field. The surface specific heat is calculated in Section 3. In Section 4 
we discuss the response of a spin in the surface layer to (a) the bulk magnetic 
field and (b) the surface field. Section 5 contains a similar discussion for an 
internal layer. In particular, we obtain the variation in the susceptibility as a 
function of distance from the surface. Sections 6-8 contain the discussion of 
scaling for the spherical model. A concluding summary is given in Section 9. 

2. F O R M U L A T I O N  A N D  REVIEW OF BASIC RESULTS 

As in the earlier work (7) (hereafter referred to as BF), we consider 
d-dimensional spherical models with nearest-neighbor ferromagnetic inter- 

a Some of the results of this work were obtained independently in Ref. 6. 
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actions (of strength Y > 0) on a hypercubic lattice. We suppose the lattice 
of spins is infinite in d' (=  d - 1) dimensions (d' >i 2) but finite with n 
" layers"  in the dth dimension, the first and nth layers forming free surfaces, 
i.e., they each have only one neighboring layer. This geometry will be referred 
to as a d'-dimensional, n-layer system, with, in the terminology of BF, free 
edge boundary conditions. In the limit n -+ oo we obtain a semi-infinite half- 
space as considered by Binder and Hohenberg (a~ for the Ising model with 
d = 3. All spins are assumed to interact with a bulk magnetic field H, while 
spins in the first layer experience an additional surface f ield/ /1.  

Following the analysis of Sections 2 and 3 of BF, the free energy per 
spin of this system may be written as 

Fa(T, h, hi,  n) = �89 In K + kBT"~I  1 "-  x [eT(h, hi)] 2 "~nT@oLa_j.(r ~ r  T (1) 

where 

. . . .   n[z - .  
& 2~r Jo j= 1 

f2 T = 4 sin2[w(r + 1)/(2n + 2)] - 4 sinZ[w/(2n + 2)] (3) 

ET(h, hi) = [2/(n + 1)] 1/2 ~ (h + h13j,1) sin[w(r + 1)j/(n + 1)] (4) 
j=l 

where 8s,k is the Kronecker delta, and we have introduced the reduced 
variables 

K = J/kBT, h = mH, and hi = mi l l  (5) 

where T is the absolute temperature, k~ is Boltzmann's constant, and m is the 
magnetic moment per spin. Finally, the reduced spherical field r is determined 
by the spherical constraint 

(aFdOJr = 1 (6) 

The sum in (4) is elementary and yields 
*r(h, hi) = [2/(n + 1)1112{hx sin[~v(r + 1)/(n + 1)] + c@ cot[~v(r + 1)/(2n + 2)]} (7) 
where 

aT = 0 r odd 
= 1 r even (8) 

If  we take the limit n --> oo in (1), we obtain the bulk free energy per spin, 

Fa(T, h) = �89 K + }kBTLa(4) - (hZ/4Jr (9) 

with r determined by 

Wa(r = 2K[1 - (h2/4J2r (1(3) 
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where 

W~(z) = Lg(z )  = L~(z) - (2,~)~ o 
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... ,(2~ dO~d "'" don (11) 

.'o z +  2 ~ ( 1 - c o s 0 i )  
j = l  

is the generalized Watson function of order d. The bulk thermodynamic 
properties now follow from (9) by the standard relations. (7'~a2> In par- 
ticular, the bulk zero-field susceptibility per spin is given by 

x~(T) = �89 (12) 

with ~bo(T) determined by (10) with h = 0, namely 

2 K  = Wa(4~o) (13) 

The bulk d-dimensional critical temperature T~,a is thus determined by 

dpo(Tr = 0 (14) 

or explicitly from (13) by 

1 Wa(O) = (1 - cos 0 3 (15) 
K ~ ' a = 2  4Jo  2rr ~ j=~ 

where the integral is finite for d >t 3. 
We will also require the behavior of ~o(T) as T approaches To,a from 

above. The behavior of the functions We(z) for small z was investigated in 
detail by BF (BF, Appendix A). The leading asymptotic behavior is sum- 
marized in Table I. 

I f  we write 

A K = Ko,a - K oc T - T~,a (16) 

Table I. Expansions of Generalized Watson Functions Wa(z) 

d W~(z) 

3 
4 
5 
i 

2 k -  1 

2k 

�89 _ (z1/2/16) + (3zZl2/256) + O(z 512) 
[(In z-0/4~r] + [(5 In 2)/4rr] + [(z In z-0/32~r] 

+ [z(1 -- 5 in 2)/32~r] + O(z 2 In z) 
Wa(0) - (zl/2/4rr) + O(z) 

W~(0) + lz(ln z)/167r21 + (C~z/16~r ~) + O(z 2 In z) 
Ws(O) + zW((O) + (za~/24~ 2) + O(z 2) 

I r  

[z'W~_l(O)/r!l + [I'(] - k)z~-(alml(4~)~-aJ2q + O(z ~-~) 
r = O  

k - 2  

[z" Wg~(O)/r l] + [(--)kzk-l(ln z + C2~) /(47r)~(k -- 1)!1 + O(z ~ ln z) 
r = O  

i 
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we find from Table I that as AK-+  0 +, 

40(73 = 64~r2(AK) 2 + O(AK3) for d = 3 

= 32~2(AK)/ln(AK -~) + O[AK/(In K) -2] for d = 4 

= -2(AK)/Wa'(O) + O[(AK) 2] for d/> 5 (17) 

On the other hand, for finite n, r is determined in zero-field by 

n - - 1  

2K = (l/n) ~ Wa-~(r + far) (18) 
r = 0  

For d > 3 this result with r = 0 determines the critical temperature Tc.a(n) 
of the finite-layer system. However, when we consider the solution of (18) 
for r # 0 and n >> 1 two limits must be distinguished(7>: (i) n -+ oo with T 
above T~,a and fixed; and (ii) n --~ oo with T i n  the critical region. In the first 
limit, corresponding to n--> oo with r a positive constant, we find [BF, 
Eq. (8.26)1 

r 73 --- Co(T) - [ Wa • (40)/Wa'(r + O(n, 2) (19) 

with 

wa•  = wa(z) - ~ m a _ l ( z )  - � 89  + 4) (20) 

In the other limit of interest we find (v) 

r 73 = x/n ~ (21) 

with x = x(n, T) determined by (see BF, Section 7.2) 

8zrn A/~ = ln[sinh(x - 7r2)i/2/(x - ~r2) 1/2] + O(n -~) for d = 3 (22) 

16zr% 2 A K = x l n n + H ) ( x ) +  O(n -~) for d = 4  (23) 

and for d/> 5 

2n 2 AI~ = - Wa'(O)x + O(n -~) (24) 

In these formulas the shifted temperature derivations are defined for all d by 

a l (  = AK + Kc,a*a(n) (25) 

where Ea(n) is the fractional shift. In three dimensions (see BF, Section 7.2) 

,~(n) = -  [(In n)/8,K~,3n] + �89 - �89 - 7(In 2/Szr)]/nKc,3 (26a) 

while for d ~> 4, ca(n) varies for large n as 

,a(n) z -IWa• -z + O(n -2) (26b) 

that is, the shift exponent ~1) h is unity. The function H41(x) appearing in (23) 
is rather complex and is given in Table V of  BF. For  our present purposes it 
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will be sufficient to note that 

H~l(x) ,~ - �89  In x as x --> oo (27) 

H~l(x) ,.~ 2rrx 112 as x -+ 0 (28) 

For  d = 3 and d/> 5 we may invert (22) and (24) and express the scaled 
field x as a function of a single scaled temperature variable n ~ A/~, namely 

x = ~b(n 1Iv A/~) (29) 

where v is the bulk correlation length exponent, which has the values {1~) 

v =  1 ( d = 3 ) ,  v= �89  ~'2 ( d = 4 ) ,  v = � 8 9  (at> 5) (30) 

On the other hand, for d = 4 such a scaled representation is only valid if 
we drop the term H~a(x) in (23). However, in view of (27) and (28) this 
term actually dominates in the limits x ~ oo and x.--~ 0, both of which are 
of physical importance. 

This completes our review of the results obtained by Barber and Fisher 
for spherical model layer systems. These results together with (1) for the 
free energy in the presence of a surface field form the basis of our present 
discussion of surface properties. We consider first the surface specific heat. 

3. S U R F A C E  SPECIF IC  HEAT 

From (1) the specific heat of an n-layer spherical model is given in zero 
field by 

Ca(n, T) = - T  O2Fa(T, O, O, n)/Or 2 = �89 - J dO(n, T)/dT (31) 

In the limit n--> oo we recover the bulk specific heat [see BF, Eq. (2.16)], 

Ca(T)/k~ = �89 + K 2 dCddK (32) 

where Co = Co(T) is, as usual, the solution of (18). In the critical region we 
find from (17) that as AK--> 0 + 

Ca(T) - �89 = - 128~r2Kg, a AK + O(AK ~) for d = 3 

= -32~r2Kg,4/ln(2xK -~) + O[(lnAK) -2] for d = 4 

-+ 2K~,a/Wa'(O) for d/> 5 (33) 

where in the last expression the leading correction is O(AK ~/z) for d = 5 and 
O(AK) for d > 5. On the other hand, for T < Tc,a 

Co ~ 0 (34) 
and hence 

Ca(T)/kB = �89 all d, T < Te,a (35) 

From these resul.ts we observe that at Tc.a (i) Ca(T) is continuous, but 
dC3/dT has a finite jump discontinuity; (ii) C4(T) is continuous, but dCJdT 
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diverges as 

dG(T) /dT  ~ A K -  1/0n AK) ~ (36) 

as A K - +  0 +, and  is zero beneath  To,a; and (iii) Ca(T) for  d > 5 is discon- 
t inuous. This behavior  m a y  be characterized by the s tandard  a2~ critical 
exponent  c, with the values <~> 

= - I  ( d =  3), c~=0(d isc . )  ( d >  4) (37) 

with an addit ional  logar i thmic factor  in four  dimensions. 4 
The surface specific heat  Ca • (T) is defined by ~1~ 

Ca • (T) = �89 lira n[Ca(n, T) - Ca(T)] (38) 
,!,-.*, oo 

Thus,  on substi tuting (19) in (31), we find 

c a  • ( T ) / l , ~  = - � 8 9  rV~ • '(So) rVa'(~0) 

- Wa • (cko) Wa"(q~o)/[ Wa'(q~o)] 2} (39) 

where Wa • (4o) is defined in (20). For  4o small, that  is, near  To,a, the functions 
appear ing  in this expression for  Ca • (T) can be expanded (see Table  I). Hence,  
on substi tuting (17) we obtain,  for  AK---~ 0 +, 

Ca• = 8~rln(2xK -1) + O(1) for  d = 3 (40) 

8 ~  ~ v / , ( 0 )  
= 2xK [ ln(AK)-  ~]2 + O [2xK - ~/2(]n AK - 1) - a/s] 

for  d =  4 (41) 

- w ~  • ( 0 )  
= 32a/ZrrZ[_ W5,(0)]5/2 (AK) -~/2 +. O(ln zXK) 

for  a =  5 (42) 

- w ~  ~ ( 0 )  
- [W((0)la(4rr)a l n A K  + O(1) for  d = 6 (43) 

and  for  d t> 7 

Ca • --> -�89 • ' (0)We'(0) - Wa • a (44) 

as T---> To,a+, where the correct ions are O(AK 1/2) for  d = 7 and  O(&K) for  
d > 7. On the other hand,  for  T < T~,a, since ~ =-O, Ca• vanishes 
identically for  all d. F r o m  these results we find for  the exponent  c~ • the 
values 

ce • = 0(log) ( d =  3), c~ • = 1 ( d =  4), c~ • = � 8 9  ( a =  5) 

~• = O(log) (a  = 6), c~, = 0(disc.) (d >~ 7) (45) 

with, again, addi t ional  logar i thmic factors  in four  dimensions.  

As is customary (see Res 12) we denote a discontinuity by a = 0(disc) and a logarithmic 
divergence by ~z = 0(log). 
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At first sight these exponent values appear to be in disagreement with 
the scaling theory of finite-size effects, (1) which predicts 

a • = ~ + 1 (46) 

for the spherical model, since the shift exponent is unity. This conclusion is 
only verified for d = 3 and d = 4. However, this theory applies only to the 
singular part of the specific heat. A closer inspection of the expansions of 
(32) and (39) for d >/ 5 indicates that the singular part of the bulk specific 
varies as (for k /> 3) 

Ca,s(T) ,-' (AK) ~-(5/2) for d = 2k - 1 

~ (AK) ~-2 In 2xK for d = 2k (47) 

while the singular part of the surface specific heat varies as 

C ~ ( T )  ,~ (AK) ~-(v2) for d = 2k - 1 

~ (2xK) e-3 In AK for d = 2k (48) 

in accord with the scaling predication (46). 
The temperature dependence (40) of C3 • (T) could have been anticipated 

from an earlier calculation (~5) of the surface specific heat of an ideal boson 
film, since the critical behavior of the spherical model and ideal Bose gases 
are essentially, equivalent. (~6) As for the boson film, we observe that the 
amplitude of the divergence of Ca • (T) is positive, and hence the total specific 
heat for finite n is enhanced above the bulk value. Since Wa • (0) and Wa'(O) 
are, in general, negative, a similar conclusion applies in all dimensions. This 
anomalous behavior is related to the enhancement of the critical temperature, 
which occurs for finite n and d > 3 with free edge boundary conditions. (7) 
Both these effects are a consequence of the effect of the boundary conditions 
on the constraint field. A detailed discussion of these phenomena has been 
given elsewhere (see Refs. 1, 7, and 15), and we will not consider them 
further here. 

4. SUSCEPTIBIL IT IES AT THE S U R F A C E  

In the presence of a surface field, as well as a bulk magnetic field, three 
susceptibilities should be distinguished. (a) In zero field (h = hi = 0) they 
may be defined for an n-layer system by 

x(n,  T )  = - [0~F/~h2]~=~l=o 

xl (n ,  T )  = - [~2F/~hl ~h]n=~l=o 

(49) 

(50) 

(51) 
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The first, x(n, T), measures the response of the system as a whole to a bulk 
magnetic field. In the limit n --> 0% at fixed Taway from To, x(n, T) approaches 
the zero-field bulk susceptibility x(T) as (1'2~ 

x(n, T) ~, x(T) + (2/n)x~(T) + ... (52) 

where the surface susceptibility X • (T) diverges at the bulk critical temperature 
Tc with an exponent Y • For the spherical model X • (T) and thus its exponent 
~• were obtained by Barber and Fisher (v (BF, Section 8.3). 

On the other hand, xl(n, T) and Xl.z(n, T) are local susceptibilities 
measuring the response of a surface spin to, respectively, a bulk magnetic 
field and a surface field. Since both are intrinsically surface quantities, we 
expect that 

X~(n, Z3 z x~(r)/n + ... (53) 

X~,l(n, T) • XI,~(T)/n + ... (54) 

as n --> oo with Tfixed and not equal to To. These relations define the surface 
layer susceptibility x~(T) and the local surface susceptibility XI.~(T), where we 
have adopted the terminology of Binder and Hohenberg. (3~ At Tc both, in 
general, can be expected (a~ to diverge with exponents yl and ~,~,~, respectively. 
In this section we calculate xI(T) and XI,I(T) for the spherical model, 

Substituting (7) in (1) and differentiating gives 

2 t l / 2 ~ m  cos2[Tr(2s + 1)/(2n + 2)] 
Jx~(n, T) = n(n + 1) ~=o q~ + f22~ (55) 

and 

1 ~2 ~ sin2[Tr(r + 1)/(n + 1)] 
JX~,~(n, T) - n(n + 1) ,=o 4 + f2~ (56) 

where Ix] denotes the integer part of x, and ~b is determined by (18). Both the 
summations appearing in these expressions are of order n. Hence, on con- 
verting the sums to integrals and recalling (19), we find 

2 /,~/2 cos 20d0  Jx~(r) ! (57) 
=~r~o f f o + 4 s i n  20 

and 

2 ~.~2 sin 2 20 dO 
JxI.I(T) (58) ! zr~o ~bo + 4 s i n  z 0  

where ~bo is the solution of the bulk spherical constraint (14). Both integrals 
may easily be transformed to standard integrals, (zT~ to give 

Jx~(T) = - �88  + �88162 + 4) ~/2 (59) 

= ~ r  + o ( I )  as r -+  0 (60) 
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and 
JXI,I(T) = �89 + 1~o - �88 + 4) 112 (61) 

= �89 - q~o ~/~) + O(~bo), ~o--> 0 (62) 

The  expressions (59) and (61) for x~(T) and XI,I(T) are il lustrated 
graphically for  d = 3 as a funct ion of  T/Tc in Fig. 1. For  compar i son  we also 
p lo t  the bulk susceptibility (13) and  the surface susceptibility x • (T) given by 
[BF, Eq. (8.27)1 

Jx• = ~o-2[Wa• + �88 -1 - lq~o-l(q~ o + 4) -3/2 (63) 

where Wa • (z) is defined in (20). In  plot t ing these curves we have used the 
tabular  data  of  Mannar i  and K a w a b a t a  (zs~ to evaluate W3(~o) and Wa'(~o). 

The layer susceptibility xI(T) is clearly divergent at  To; substi tuting (17) 
in (42) we find, as AK --> 0, 

Jx~(T) ,,~ (2xK)-~/16rr for  d = 3 

z (2xK)-Xl2(ln~K-1)lr for  d = 4 

z �89189 -lj= for  d >/ 5 (64) 

f rom which we can identify the exponent  y~. 

5 F 

J 4 

3 
JX 

i x 

Iil1-• 

I 
Xu 

O~ 1 T/T~ 2 3 

Fig. 1. Plot  o f  bulk susceptibility xo, surface susceptibili ty x • surface layer suscep- 
tibility x1, and local surface susceptibility x1,1 versus T/Tc for d = 3 spherical  model .  
N o t e  that  Xl,~ remains  finite, but  has  an infinite slope at To. 
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Table II. Susceptibility Exponents for the Spherical Model with a Free 
Surface 

i i i i i 

Bulk Surface Layer Local 
Dimension, susceptibility, susceptibility, susceptibility, susceptibility, 

d y y• Y~ Y~,z 

3 2 3 (log) 1 -- 1 
4 1 (log) 2(log) �89 1/2 -- �89 - xt2 

_>5 1 2 �89 - �89  

On the other  hand,  XI,I(T) is finite at  To; subst i tut ion of  (17) yielding, 

JXI,I(T) - �89 ,~ -Srr(2xX) for  d = 3 

- 4~r~/2(AK/ln A K -  1)~/2 for  d = 4 (65) 

,~ [-�89 ~/2 for  d > 5 

as AK--> 0 +. However ,  benea th  Tc we have 4o = 0, and  hence 

d x i j d T =  0 T <  Tc, all d (66) 

Thus  in three dimensions dx~,z/dT is d iscont inuous at  T~, while in four  or  
more  dimensions dx~,~/dT diverges as T approaches  Tc f rom above.  By 
definition the critical behavior  of  dx~a/dT is characterized by an exponent  
1 + y1.1, and  hence we m a y  determine yl,~, which characterizes the singular 
pa r t  o f  XI,I(T). 

The exponents  yz and  y~,~ are summar ized  in Table  II,  where, for  com- 
pleteness, we also give y• and y. Elsewhere (4~ we have argued, on the basis 
o f  a scaling ansatz  for  F(n, h, h~, T) [see also Section 7], that  yl and ?,~,z 
should satisfy 

2yl - y1,1 = y + v (67) 

where v is the bulk correlat ion length exponent ,  given in (30). For the ex- 
ponen t  values listed in Table  I I  this relation m a y  be easily checked and is 
found  to be quite exact, including the case d = 4, where factors  of  ln(zXT) 
also occur. 

5. S U S C E P T I B I L I T Y  ON I N T E R I O R  L A Y E R S  

I t  is also of  interest to calculate the susceptibility on t h e / t h  layer (l = 1 
corresponding to the surface) of  a semiinfinite simple cubic lattice half-space. 
Again we distinguish the layer susceptibility x~(T), measur ing  the response 
of  a spin in t h e / t h  layer to a bulk field, and  the local susceptibility X~,z(T) 
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characterizing the response to a local field applied only to the / th  layer, At 
Tc both xz(T) and )O,t(T) are expected (a) to diverge with exponents 7z and 7t,,, 
respectively. 

For the spherical model x~(T) and xt,,(T) may be obtained by a straight- 
forward generalization of our previous arguments. Consider, to begin with, 
an n-layer system with a field hz coupling to spins in the lth layer (l < n). The 
resulting free energy is given by (1) with cr(h, hi) replaced by 

er(h, h~) = [2/(n + 1)] ~j2 ~ (h + h~3j.~)sin[Tr(r + 1)j/(n + 1)] 
j = l  

= [2/(n + 1)]z/2{hz sin[Tr(r + 1)l/(n + 1)] 

+ ,~rh cot[Tr(r + 1)/2(n + 1)]} (68) 

where c~ = 0 (1) if r is odd (even). Hence we obtain 

Jx,(n, T)  = - [OaF/Oh Ohz]n =n, = o 

1 

- n(n + 1) 

x tl/2,-~1/21 sin[rr(2s + 1)//(n +ff + f2~l) ]  cot[~r(2s + 1)/2(n + 1)] (69) 
3=0  

and 

Jxt.,(n, I") = - [82F/Oh,~]h =n, =o 

1 ,~.1 sin2[~r(r + 1)I/(n + 1)] (70) 
n(n + 1)/-'r=o r + f~r 

with ~ given by (18) and f2~ by (3). 
In the limit n ---> o% corresponding to a semi-infinite half-space bounded 

by a free surface, we may replace the summations by integrations, to yield 

1 y f  sin lO cot �89 dO (71) 
Jx~(T) = ,~.-.~lim nJx~(n, T) = ~ .~o + 4 sin 2 �89 

and 

J)ct.,(T) = lim nJx,.~(n, T)  = 1 f f  sin 2 lO 
,.. ~ ~r 4'o + 4 s in 2 �89 dO (72) 

where ~o is 
expressions are evaluated in Appendix A. Hence we obtain 

Jx,(T) = �89162 - e-Zr(r 

and 
JX:,~(T) = �89162162 + 4)-~/2[1 - e -aw(|176 

again the solution of (13). The integrals appearing in these 

(73) 

(74) 
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where 

V(r = ln[1 + �89 + �89162162 + 4) 1/21 

As 4o ---> 0, corresponding to T--+ ire+, 

r(4o) = r "~ + o(r ~ )  

and hence for f i xed  l 

Jx,(T) = �89162 -1/2 + O(1), 40 -->" 0 

and 

(75) 

(76) 

(77) 

Jxz,z(T) = �89 - �89 + O(q~o), &o --> 0 (78) 

Comparison of these expressions with (42) and (44) for Xl and X1,1, respec- 
tiveiy, shows that for all finite l, 

~'~ = ~'i and Vz,~ = ~i,1 (79) 

where the exponents yl and 71,1 are given in Table II. On the other hand, the 
amplitude increases with I. The result (79) confirms, for the spherical model, 
a conjecture originally made by McCoy and Wu (a) for the layer magnetization 
of the two-dimensional Ising model, that the " l aye r "  exponents 7~, y~,~, etc., 
are independent of l for all finite l. 

If we recall (12) relating 4o to the bulk susceptibility X(T), we may 
write (73) as 

x~(r) = x(T)[1 - e -zr(%)] (80) 

which clearly illustrates that as l --> ov at fixed T above To, x~(T) tends to the 
bulk susceptibility, as expected on physical grounds. On the other hand, we 
find from (74) that in the same limit Xt,z(T) tends to 

JX~, ~(T) = -i'eo'l - i/2ri~v.o + 4) -1/2 (81) 

Physically, we may describe this quantity as the response of a spin 
in an infinite d-dimensional hypercubic lattice to a magnetic field applied 
only to the (d - 1)-dimensional layer containing the spin. Since 

JXo~,~(T) z �88 -1'2 + O(r lj2) as 4o---> 0 (82) 

we find, on comparing this expression with (60), that X~.~(T) diverges at To 
with the same exponent (71, given in Table I) as xI(T). Note, however, that 
Xo~o~(T) is not equal to xI(T). Moreover, there appear to be no convincing 
grounds for assuming that 7'| and 7'1 are generally identical. Indeed, the 
direct estimation of },~. ~ for a more realistic model, such as the Ising model, 
would be of some interest. 
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In view of (76) and the exponent relation (30), we may write (80) in the 
critical region in the physically illuminating form 

xz(T) • x(T)[1 - exp( -a l t~ ) ]  (83) 

where, as usual, t = (T - Tc)/To, v is the bulk correlation length exponent 
[given by (30)], and a is a constant. This form for x~(T), which may be 
written as 

xz(T) z x(T)f(1/~(T))  (84) 

where ~:(T) is the bulk correlation length, is a rather natural postulate for the 
variation of a thermodynamic near a free surface. In the context of the 
magnetization near a surface it has been discussed recently by Fisher (11) 
(see also Ref. 13). 

I f  we assume that 
f ( x )  • fox  ~ as x --~ 0 (85) 

corresponding to T--+ To at fixed l, we can conclude, with l = 1, that 

71 = 7 - ~ v  (86) 

Unfortunately, it does not seem possible to fix a priori the value of a. For  
the spherical model (83) gives 

--- 1 all d (87) 
and hence 

71 = 7 - v (88) 

which is, of course, confirmed by the exact values of  yl given in Table I. 
The exponent relation (88) is, however, special to the spherical model, 

although it is tempting to conjecture that the scaling funct ionf(x)  appearing 
in (84) would be more generally linear for small x. This assumption is, how- 
ever, untenable; the values (a'a) yl = 1-8l-; y =-}, and v = 1 for the two- 
dimensional lsing model indicate, via (86), the value a = -~ for this model. 
The general applicability of  an assumption of the form (84) appears therefore 
to be limited in the absence of any heuristic arguments to predict a. 

This completes our discussion of the response of a spherical model to a 
local surface or " l aye r "  field. In the next section we being our investigation 
of the validity of scaling for this system. 

6. S C A L I N G  R E P R E S E N T A T I O N S  FOR xl(n, T) A N D  X~,l(n, T) 

In Section 4 we calculated the surface layer susceptibility xI(T)  and the 
local surface susceptibility XI,I(T) defined by (53) and (54), respectively. 
Both xI(T)  and XI,I(T) were found to be nonanalytic at the bulk critical 
temperature To,a. 
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On the other hand, tbr finite n, inspection of (55) and (56) indicates 
that the divergence of xl(n, T) and Xl,~(n, T) is determined by 

~(n, T) = 0 (89) 

with ~ determined by (18). Explicitly, we have, for sufficiently large n, 

Jx~(n, T) z 2n-2(~ -~ + O(1), ~--+0 (90) 

Jx~,l(n,T) • ~rn-~f5 -~ + O(1), if--+0 (91) 

Hence for d > 3, xl(n, T) and X~,~(n, T) diverge at the shifted layer critical 
temperature Tc,a(n). If  we compare (90) and (91) with the analogous expan- 
sion [see BF, Eq. (8.16)] for x(n, T), defined in (49), namely 

Jx(n,T) • 27r-Xn-l~ -~ + O(1), ~b--+ 0 (92) 

we see that for allfinite n, and d > 3, 

x~(n,T) ~ X~.z(n,T) ~ x(n,T)  ~ f-~ as i - + 0  (93) 

where ~ is the exponent of the ( d -  1)-dimensional bulk susceptibility (see 
Table ii) and 

i = [ T -  Tc,a(n)]/Tc,a (94) 

That is, all three susceptibilities, with n finite, diverge at Tc,a(n) with the same 
exponent, although their respective amplitudes are different. 

For a two-dimensional n-layer system (89) is only satisfied at T = 0, 
where [see BF, Eq. (F.16)] 

~(n, 77) ~ 2rr2n -2 exp(8~rn A/C) ,-~ exp(-c /T)  (95) 

with A/r defined in (26). Hence, for d = 3 and n finite, x~(n, T) and X~,l(n, T) 
are finite and analytic functions of T except at T = 0, where they diverge 
exponentially as exp(c/T) with c a positive constant. The behavior of x(n, T) 
is similar [see BF, Appendix F]. 

Clearly the critical behavior of xz(n, T) and Xz,z(n, T) for finite n is 
qualitatively different in all dimensions from that exhibited in the limit 
n--~ oo. Yet on physical grounds we would expect (~'~) that the expansions 
(53) and (54) are valid for sufficiently large n and T away from To. In the 
critical region they must, however, break down. 

In this regime the scaling theory of finite-size effects developed by 
Fisher (z.~) predicts that the singular parts of the thermodynamic properties 
of an n-layer system may be represented in the form 

Y(n, T) ~ n~X(nl/ff) n -+ ~ ,  i -+ 0 (96) 

where i is defined in (94) and v is the bulk correlation length exponent. The 
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exponent  o~ is determined by the requirement  that  (96) reproduce the correct  
critical behavior  in the limit n - +  Go at  fixed T. Hence  for  Y = X1 or X1,1 
we require 

X(z) = Xoz- ~ as z -+  ~ (97) 

with 4~ -- 71 and 71.1, respectively, to give the correct  t dependence (54), and 

= - 1 + @Iv) (98) 

to give the correct  n dependence (53). For  the spherical model  the exponent  
values given in Table  I I  give for all d 

~ol = - 1  + (7,Iv) = 0 (99) 

~o1,1 = - 1 + (v1 ,1 /~ )  = - 2  ( 1 0 0 )  

In the earlier work  [BF, Section 9] the scaled fo rm (96) was confirmed 
for the susceptibility )C(n, T). We will now show that  xl(n, T) and Xl.~(n, T) 
may also be writ ten in this fo rm and explicitly obta in  the appropr ia te  scaling 
functions.  

To  do so, we recall that  in the critical region the spherical field ,} has the 
fo rm (21). Hence we must  analyze (55) and (56) in the limit n--> Go with 
x = ~n 2 fixed. 

We consider xl(n, T) first. On substi tut ing (21) in (55) and  approx imat ing  
sin[=/(2n + 2)] by =/(2n + 2), we obta in  

[1/2n-1/2] cosZ[~r(2s + 1)/(2n + 2)] + O(n_l) 
Jx1(n, T) = 2 s=o~ x - =2 + 4n 2 sin2[Tr(2s + 1)/(2n + 2)] (101) 

The  asympto t ic  evaluat ion for large n of  sums of  this type has been discussed 
in detail by Barber  and Fisher [BF, Section 4.1]. Fol lowing their analysis, we 
replace the sine in (101) by its argument ,  the cosine by unity, and extend the 
sum to infinity. The  error  incurred in this process can be bounded,  as in the 
earlier work,  and is O(n-1). Hence we find 

Jgl(n, T) = 2 "~ [x =- =2 + 4rr2(s _ �89 + O(n-1) 
s = 0  

pl/2rlr.~ _ =2)]/2~r2 + O(n-1) (102) 
= ~00 t ~ \  ,~" 

where we have introduced the modified r emnan t  funct ion <7,19~ 

1/2 Ro0 (z) = [z + (r - �89 = �89 tanh(=zl/2) (103) 

Hence we finally obtain  for n >> 1 with x = q~n 2 fixed 

Jxl(n, T) = �89 - =2)-112 tanh[�89 - =2)1/~] + O(n-1) (104) 
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To obtain the corresponding expression for X I , I ( M ,  T), we first make use 
of the identity 

(sin 2 2 0 ) / ( 4 u + 4 s i n  2 0 ) = { +  u +  cos 2 0 -  u(1 + u ) ( u + s i n  20) -1 (105) 

with 
0 = zr(r + 1)/(2n + 2) (106) 

and 
u = (x/4n 2) - sin2[~/(Zn + 2)] = (x - rr2)/4n 2 + O(n -3) (107) 

to write (56) as 

Jxl , l (n ,  T )  = (n + 1)-1(�89 + u) 

+ n(n + 1-----~ ~ cos[~r(r + 1)/(n + l)1 - u(1 + u)sz (108) 
r = 0  

where 

sz = n(n + 1) ~ {u + sin2[~r(r + 1)/(2n + 2)]} -1 (109) 
T=O 

may be reduced to a simple remnant function as follows. Substituting (107) 
for u gives 

sz = 4  ~ { x - ~ r  z + 4 n  2sin2[~(r+ 1) / (2n+2)]}  -1 + O(n -1) (110) 
r = O  

Proceeding as before, we replace the sine by its argument and extend the sum 
to infinity. The resulting error is again of order n-1, and hence we obtain 

s~ = 4 ~ (x - ~r z + 7r2r2) -~ + O(n -1) = 4Roo(X/~r 2 - 1)/~r 2 + O(n -1) 
r = l  

= 2(x - ~r2)-l[(x - 7r2) ~/2 coth(x - ~r2) ~/2 - 1] + O(n -~) (111) 

Substituting this result together with (107) in (108) and noting that the 
remaining sum over cosines in (108) vanishes (2~ identically, we obtain the 
required expression 

Jxl , l (n ,  T )  = -.}n -1 - �89  - 7r2) 1/2 coth(x - ~r2) 1/2 + O(n -a) (112) 

In this expression the second term represents the singular part to which the 
scaling form should apply. ~,2~ 

We now recall [see (29)] that in the critical region for d = 3 and d t> 5 
the scaled field x is a function of the single scaled variable n 1/~ A/( ,,~ n ~/~ Ai. 
Hence for d = 3 and d ~> 5 we may write (104) and (112) as 

Jxl(n ,  T) = Xl(nl/~ A/s + O(n -~) (113) 

Jx~,l(n, T )  = �89 -~ + n-2X~,~(n~l~A[s + O(n -3) (114) 
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which, in view of (99) and (100), confirm the scaling hypothesis (96) in these 
dimensions. In four dimensions, however, since x is not a function of a single 
scaled variable over the whole range 0 < x < o% such a scaled form does not 
exist. A similar failure was found for x(n, T )  [see BF, Section 9.3], and is not 
surprising in view of similar difficulties with thermodynamic scaling (16) for 
d = 4 .  

The scaling functions X~(z)  and X z , j z )  may be easily determined. For 
d/> 5 they are given explicitly, f rom (22) and (24), by 

X l ( z )  = �89 - 7r 2) - zl2 tanh[�89 - *r2) 112] (115) 

XI , I  (z) = - � 8 9  az - ~r2) 112 co th (w  az - rr2) 112 (116) 

where 

wa = - 2 / W a ' ( O )  > 0 (117) 

In three dimensions a closed form does not seem to exist, but the scaling 
functions may be specified parametrically by 

X l ( z )  = �89  tanh �89 (118) 

X~.~(z) = �89 coth y (119) 

87rz = ln[(sinh y)/y]  (120) 

I t  is straightforward now to show that as z -+ m we have 

X~(z)  = (z-Z/!6,r) - [ln(16,rz)/2(87rz) 2] + O [ ( l n z ) / z  3] for d = 3 (121) 

= �89 -112 + O(z -al2) for d >1 5 (122) 

and 

Xz,z (z )  = 4~rz + �89 + O[(ln z)/z] for d = 3 (123) 

= -�89 ~12 + O(z  -112) for d 1> 5 (124) 

The leading terms in these expressions are in precise accord with (101), with 
~b = ~,~ or yl.Z as given in Table II. I f  we replace z by n ~/v AK, we recover, as 
required, the limiting critical behavior (64) and (65). 

In the limit z --> 0, corresponding to AK ~ 0 at fixed n, we obtain 

X l ( z )  = � 8 8  7rz + O(z  2) for d =  3 (125) 

= (4/wa)z -~ + O(1) for d/> 5 (126) 

and 

X l , l ( z )  = �89 - 87rz + O(z  2) for d = 3 

= (~2/2wa)z-1  + O(1) for d >/ 5 

(127) 

(128) 
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For d/> 5 the leading terms of these expansions reproduce the divergence 
(93) at To,a(n). 

For d = 3, Xl(z) and Xl,~(z) tend to finite limits as z --~ 0, reflecting the 
absence of a nonzero critical temperature for a two-dimensional layer system 
with n finite. On the other hand, if we consider the limit z - + - 0 %  corre- 
sponding to T - +  0 at fixed n, the scaling representations should (7~ reproduce 
the exponential divergence of x~(n, T) and Xl,~(n, T) at T = 0. To obtain 
the behavior of Xx(z) and Xz,z(z) in this limit, we notice first that for z < 0, 
y is pure imaginary, i.e., y = iO. The limit z - - > - o e  then corresponds to 
0 --> ~r. Hence we find as z --> - o o  

Xi(z) = ~ - 2  eS~j~l + r _ = - a  + O(e- l~j)  (129) 

and 

X~,~(z) = - � 8 9  8=t~' + �89 -1 + �89 + O(e -j~i) (130) 

Substituting these expansions in (113) and (114) gives for T--> 0 at fixed n 

Yxz(n, T) ~ ~v -2 exp(Scrn] A/~I) (131) 

and 

Jx~,~(n, T) "~ �89 -2 exp(87rnlA/~]) (132) 

Comparison of these predictions with the results of the direct analysis, 
obtained by substituting (95) in (90) and (91), confirms the validity of the 
scaling representations for large fixed n in the limit T - +  0. 

Thus we have seen for d = 3 and d >t 5 that the scaling theory of finite- 
size effects, which has previously been confirmed ~v'zS~ for bulk properties, 
also describes the behavior of intrinsically surface properties for spherical 
models of finite thickness. In four dimensions a single scaling form does not 
exist. However, (104), together with (23), remains a valid representation in 
the critical region. In particular, the limit x ---> oo reproduces the bulk critical 
behavior (64) and (65), while in the limit x --> 0 we recover (93). 

7. S C A L I N G  R E P R E S E N T A T I O N  FOR FREE E N E R G Y  IN F IN ITE  
F IELD 

The analysis of the previous section, together with the earlier work, ~v has 
shown that in zero field the thermodynamic properties of a finite n-layer 
spherical model are in accord with the scaling theory of finite-size effectsJ 1,2~ 
Elsewhere ~4~ we have extended this theory to nonzero bulk and surface fields. 
This generalized scaling theory suggests that the singular part of the free 
energy of an n-layer system should have the form 

Fa,~(T, h, hi,  n) ~ n(~-2~/~Q(nl/V, n~l~h, n~l/~hl) (133) 
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as n -+ oe and h, h~, i -+ 0, where 2x =/3 + 3 is the bulk gap exponent (lm and 
the new surface field exponent A~ is given by (~ 

A I = A - 71 + y1,1 (134) 

In this section we will confirm that the free energy of an n-layer spherical 
model has this form and explicitly obtain the scaling function Q. For simpli- 
city, we will only discuss the case d = 3. 

The appropriate free energy to consider (7~ is, however, not F3(T, h, hi ,  n; dp), 
which is an explicit function of the spherical field ~, but rather the free energy 
per spin Aa(T, h, hi ,  n) at constant spherical constraint, 

5 a2 = ~ <s, z) = N (135) 

This free energy is related to F3(T, h, h~, n; (~) by a Legendre transformation. 
Thus we find (see BF, Section 10.2) 

Aa(T, h, hi ,  n) = Fa(T, h, h~, n; (o) - J4) - 2Jcos[rr/(n + 1)] (136) 

where ~ is the solution of 

~Fa/~dp = J (137) 

Since for a three-dimensional spherical model ( ~  

A = ~ ,  ~ = - 1 ,  v =  1 (138) 

we find from Table II 

A~ = �89 (139) 

Thus for a two-dimensional n-layer spherical model (133) predicts that 

213A3,~(T, h, hi ,  n) ~ n-3Q(ni ,  nS/2h, nlt2hl) (140) 

as n--> oe and i ,h ,  h l -+O.  

In the critical region we still have ~ = x/n 2, with x now a function of 
h, hz, and T. Hence from (136) 

Aa.~(T, h, h~, n) = Fa,~(T, h, h~, n; x/n 2) - Jx/n 2 (141) 

Now from (1) and (7) we see that F3 consists of five terms. The first (�89 K) 
is clearly nonsingular in the critical region and can be ignored. The two terms 
explicitly dependent on h~ were analyzed in the previous section, while the 
term proportional to h ~ was analyzed by Barber and FisherJ 7~ Hence from 
(104), (112), and BF, Eq. (9.11), we find, as n --> oo with x a positive constant, 
that 

2flF3.~(T, h, hi ,  n) = Ls(x) - n-Sy2Ql(x)  - 2n-ayylQ2(x)  

+ y~2n-SQa(x ) + O(n -~) (142) 
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where L~(x) is the 

/ / x )  = 

Ql(x )  = 

Q2(x) = 

Qa(x) = 

singular par t  o f  

n - - 1  

(l/n) ~, L~(~/n ~ + aO (143) 
r = 0  

�89 - ~r2)-~{1 - 2(x - ~r2) -112 tanh[�89 - zr2)z12]} (144) 

(x - ~r2) -1/e tanh[�89 - 7r2)~/21 (145) 

(x - 7r2) 1/2 coth(x - ~r2) 112 (146) 

and  we have int roduced the scaled field variables 

y = (JkBT) -  112hn512, Yl  = ( J k ~ T ) -  ll~hlnll2 (147) 

I t  remains  to analyze L(x) .  This is done in Appendix  B, where we show that,  
as n --> oo with x a positive constant ,  

L ( x )  = L(O) + 2 x ( K  + A K ) / n  ~ + Qo(x)/n a + O[(ln n)/n 4] (148) 

where A/~ is defined in (28) and  

Qo(x) = (Tr/4)[R2,o(-1) - R2,o(X/rr 2 - 1)] (149) 

The  r emnan t  funct ion ~19~ R2,o(Z) is defined by 

R2,o(Z) = (r 2 + z)[ln(1 + z/r  2) - z] = ln[(sinh~rwll2)/~rwll2]dw (150) 
r = l  

The constant  te rm L(0) in (148) is nonsingular  and m a y  be neglected. Hence 
if we in t roduced the scaled tempera ture  variable 

2 = n A R  (151) 

we m a y  write (142) as 

2/3Fa,~(x) = 2xK/n  2 + n-3122x + Qo(x) - y2Ql (x )  - 2yy iQ2(x )  

+ y~2Q3(x)] + O[(In n)/n 4] (152) 

F r o m  (137) the scaled field x is given in leading order  by 

22 + Qo'(x) - �89 - 2yy lQ2 ' ( x )  + y12Qa'(x) = 0 (153) 

In  zero field (i.e., y = y l  = 0) this reduces to (22). In  principle, at least, we 
can solve (153) to give as n --> oo 

x = q~(2, y, Yl) (154) 

Finally, if we substitute (152) in (141), we obta in  the required expression, 

2~A3,~(T, h, hi ,  n) = n-3122x + Qo(x) - y2Q~(x)  - 2yy~Q~(x) 

+ y~2Qs(x)] + O[(ln n)/n~] (155) 
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which, in view of  (154), is precisely of  the form (140). The scaling function 
Q(z, y, ya) may be specified parametrically by, on  combining (144)-(146) 
and (153), 

Q(~, y, y~) = 22(p z + 7r 2) + �88 -- R2,o(p2/rrZ)] - �89 

+ [y~p-~ - 2yy~p -~] tanh �89 + y Zp coth o (156) 

42 = (1/2~r) ln[(sinh p)/p] - yZp-~ + p-a(3y~o-z  - 2yyz) 

x tanh  �89 - -}o-Z(Y~ -~ - 2yy~) sech s -~p 

- p - l y ~  coth p + y~Z cosech ~ p (157) 

8. SCALING R E P R E S E N T A T I O N  FOR S U R F A C E  FREE ENERGY 

An alternative (4,11~ approach  to a scaling theory for surface properties 
is to scale not  with n but with the reduced shifted temperature L That  is, in 
place of  (133) we postulate (~'11~ the form 

Fa.s(r, h, hl ,  n) z i2-~Q(nU, h/i A, hl/ i"l)  (158) 

to be valid as n ---> oo and i, h, hi --> 0. While these alternative scaling assump- 
tions are equivalent and lead to the same exponent  relations, there appear  (1~ 
to be some advantages to t-scaling. In  particular, we can deduce (~,~z~ a scaling 
form for the surface free energy which is analogous to the s tandard scaling 
assumption for the bulk free energy. 

For  a three-dimensional n-layer spherical model  (158) takes the explicit 
form, recalling the exponent  values (138) and (139), 

2fJA3,s(T, h, hz, n) z AI(  3 Q(n AK, hlAl~ 5/2, h~lAIs ~l~) (159) 

where we have scaled, for convenience, with A/~ ~ i. I f  we introduce the 
scaled field variables 

b = (Jkr~T)-I/2h/AR 512 =2-512yz, b, = ( JkBT) - ' t%z / (AK)  '12 =2-,/Zy~ (160) 

where y and yl  are defined in (147) and ~ in (151), we find on compar ing 
(159) and (140) that  

0(2, fi, bz) = ~-ZQ(~, ~5/2fi, ~/2b~ ) (161) 

Hence the t-scaling funct ion ~) follows immediately f rom (156) and (157). 
N o w  if we consider the limit n --> oo at fixed T not  equal to T~, we may 

define (z~ the surface free energy A• h, h~) by the expansion 5 

A(T, h, hz, n) ~ Aoo(T, h) + (2/n)A• h, hz) + ... (162) 

5 In this definition we assume for symmetry that hi couples to spins in the " top"  and 
"bottom" surfaces, i.e., the first and nth layers. This, however, creates no difficulties 
and we simply double all terms dependent on h~ in our previous results for the free 
energy. This assumption will be made for the remainder of our discussion. In particular 
all terms in (156) and (157) containing v~ will be doubled. 



Crit ical  Behavior of a Spherical Model  w i th  a Free Surface 81 

where Am(T, h) is the bulk free energy. If  we assume that bulk scaling ~12~ 
holds, we may write in the critical region 

A~(T, h) ,.~ AK30_.~(h/AK 5/2) (163) 

and hence we can expect that 

lira Q(z, v, vl) = Qoo(v) (164) 

To investigate the surface free energy on the basis of (159) we require the 
leading corrections to (164) for large z. 

From (161) and the parametric equations (156) and (157) for Q we 
observe that for large 2 the parameter p oc 2. A more detailed analysis gives 
a s  2 --+ c~3 

p = 2A(b){1 + B(b)In[2zA(b)]/e + C(b, bl)/~ + O[(ln z'/d)2]} (165) 

where 

B(b) = [5A(b) - 32~r]-1 (I66) 

C(f;, bl) = 27rB(b)[2612A -1 + 4bf;iA -8 - 362A -5] (167) 

with A(b) the solution of 

A s - 8~rA ~ = 2~rb 2 (168) 

The required expansion of O now follows if we substitute (165) in (156). 
Hence we obtain as 2 -+ oo at fixed b and b~ 

O(~,b, b l )= Qo~(b) + Ql(b)ln[2~A(b)]/2 + Q• bl)/2 + 0[0n2/2) 2] (169) 

where 

O~(b) = [2A2(b)/3]- [5b2/6AZ(fO] (170) 

Ql(b) = A2(b)/4rr (171) 

~)x (b, bl) = 2(bl 2 - 2)A(b) + [A2(b)/4~r] -- [4bbl/A(b)] (172) 

Clearly (169) is consistent with (164) and yields in the limit n -+ oo the bulk 
free energy in the form (163) with the bulk scaling function ~)~(v) determined 
by (170) and (168). To obtain the surface free energy defined by (162), we 
must recall from (25) and (26b) that 

A/~ = A K -  [(In n)/8rrn] + (a/n) (173) 

where the amplitude a is given in (26a). Hence on substituting this expression 
for A/~ and (169) in (159), we find that all terms proportional to (In n)/n cancel, 
and we are left with a correction term of order n-  1, as expected. Comparison 
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with (162) yields immediately the surface free energy in the form 

fiA, X(T, h, hi) z {[A(v) AK] 2 ln[2A(v) AK]/16~-) 

+ �88 + Q• v~) - 5avO_o~'(v)/21 (174) 

where v and vl are given by (160) but with A/~ replaced by AK. One may 
easily check that this expression gives the correct critical behavior for the 
surface properties of a three-dimensional spherical model. 

In the absence of a bulk magnetic field, i.e., v = 0, we have from (168) 

A(0) = 8~r (175) 

and hence the surface free energy takes the simple form 

fiA~• 0, hi) ~ 4~r(AK 2) ln(16~r AK) + 4~r(AK~)(87ra - 1 + vl 2) (176) 

The second term in this expression is of the form postulated by Binder and 
Hohenberg (3) for the surface free energy of a spin system in the presence of a 
surface field. However, this term alone would not yield the correct behavior 
for the surface specific heat [see (40)]. This failure for the spherical model of 
the Binder-Hohenberg postulate is a direct consequence of the "anomalous"  
shift in the critical temperature. (7) For more realistic models, where the shift 
exponent appears to exceed unity, such a form should correctly reproduce all 
of the surface thermodynamics in the absence of a bulk field. (4) This com- 
pletes our discussion of scaling for a spherical model with a free surface. 

9. C O N C L U S I O N  

We conclude by summarizing the main results of this paper. 

(i) Critical phenomena in d-dimensional ferromagnetic spherical models 
with free surfaces were studied. In particular, the surface specific heat C • (T) 
and the various surface susceptibilities were discussed (Sections 3 and 4). 

(ii) The critical exponents ~• 71, and 71,1 describing the divergence at 
the bulk critical temperature of C • (T), the surface layer susceptibility xI(T), 
and local surface susceptibility X1,KT) were obtained. The values of these 
exponents are summarized in Eq. (45) and Table II. 

(iii) These exponents satisfy in all dimensions the various scaling rela- 
tions for surface exponents which have recently been proposed. (1-~) 

(iv) The generalized scaling theory (4) for systems of finite thickness in 
finite fields was investigated in detail (see Section 7) and shown to be an 
exact representation of the free energy for d = 3. The appropriate scaling 
function was explicitly determined. 
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(v) This scaling theory can be recast <~'n) in terms of t-scaled rather than 
n-scaled variables. This was done in Section 8, where a scaled form for the 
surface free energy was obtained. In zero bulk field this result is almost of the 
form proposed by Binder and Hohenberg a; the difference can be attributed to 
the "anomalous"  shift in the critical temperature, which occurs for the 
spherical model. (7) 

(vi) In the t-scaling formulation the surface field hi is scaled by t~l, 
which introduces (<11> a new surface gap exponent. Quite generally (~,m 

A 1 = A -- Yl + Y1,1 (177) 

where 2x = fi + y is the bulk gap exponent. Hence from the values of Table II 
we find that zX~ = �89 for the spherical model in all dimensions. Since this value 
is also found (4'~1) within mean-field theory and for the two-dimensional Ising 
model, there appear to be reasonable grounds for conjecturing (n) that A1 has 
a universal value of �89 The existing estimates <a,9) for the surface exponents of 
the three-dimensional Ising model are not inconsistent with this assump- 
tion. (9'11) (See the section, Note Added in Proof.) 

(vii) Finally, the variation of the susceptibility near a free surface was 
also discussed (see Section 5). On any layer a finite distance from the free 
surface the layer susceptibility x~(T) and the local layer susceptibility Xz,z(T) 
are found to diverge with the same exponents as x~(T) and X~,,(T), respec- 
tively. In the critical region both x~(T) and X~,~(T) may be written in the form 
discussed recently by Fisher, (~) with a temperature-independent extrapolation 
length. However, this approach seems of limited application m) to other systems. 

A P P E N D I X  A .  E V A L U A T I O N  O F  x~(T) A N D  X~,,(T) 
In this appendix we evaluate 

1 (5 s in l0cot �89  
Jx,(r) = ~ Jo ~-+--4 ~ ~o dO 

and 

l f f  sin 210 �89 
JX~,~(T) = ~r 4o + 4 sin 2 -  

We consider x~(T) first. Introducing the identities 

cot �89 = (1 + cos 0)/sin 0 

2sin 2�89 = 1 - cos0  

we obtain, since the integrand is periodic of period 2~r, 

1 /'~= sin 10 1 + cos 0 
Jxz(T) = ~ j o  s in0 4o + 2 - - 2 c o s 0  

dO 

(A.1) 

(a.2) 

(A.3) 

(A.4) 

(A.5) 
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I f  we now change integration variable to z = d ~ we may rewrite this integral as 

1 o(dzz  2 1 -  1 z +  1 (A.6) 
J x , ( T ) -  4 7 r i ~ - ~  z -  f z 2 -  (r + 2 ) z -  1 

where the contour  of  integration is the unit  circle, Izl = 1 i t  is convenient  
to write 

z 2 - (r + 2)z - 1 = (z  - z + ) ( z  - z _ )  (A.7) 

where 

z+ = 1 + �89162 + ~[r162 + 4)11~2 (A.8) 

Since r > 0, only the pole at z = z_ lies within the contour  o f  integration. 
Hence by Cauchy 's  theorem (A.6) may be written 

Jxz (T )  = - �89 + R~] (A.9) 

where 

1 ; d ~ - i  [zZZ--1  z +  1 ] }  (A. 10) 
Ro = q _ 1)! \ d z  ~-1 [ z - :  f (z  - z + ) ( z  - z _ )  ~=o 

z_ 2 . -  1 z_ + 1 z_ ~ -  z_ -~ z_ + 1 
- (A.11) 

R1 z_Z(z_  - 1) z_ - z +  z_ - 1 z_ - z +  

and  

To evaluate Ro, we note that  

Hence 

where 

and 

Since 

d ~ ~ n ! dkv d ~- ~u 
dx-- 7 (uv) = (n - k ) !  k l ~ dx  '~- ~ 

k = O  

(A.12) 

Ro = 2 ak/3k (A.13) 
k = O  

[ z+l 1t ~ = ~ .  ~ (z - L 3 ~ z -  z_ )  .oo  
(A. ~ 4) 

~ = q - 1 - k)! ~ l-Y-s-T- 1 !J~=o (A.15) 

z z l -  1 (z l -  1)(z z + 1) 
- = 1 + z + z 2 + - . .  + z 2z-1 (A.16) 

z - 1  z - 1  
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we find 
/3~ = 1 (A.17) 

while decomposing (z + 1)/(z - z+)(z  - z_ )  into partial  fractions yields 

~ = (z+ - z _ ) - l [ ( z _  + 1 ) z _ - l - ~  _ (z+ + 2 ) z + - 1 - ~ ]  (A .18)  

Recalling that  
z+z_  = 1 (A.29) 

we find on substituting (A. 28) in (A.13) 

[ z-1 ~-L " 1 Ro = (z+ - z_) -1 (1 + z+) ~ z+ ~ - (1 + z_) k~=oZ_ k (A.20) 
/ c = 0  

The remaining sums are geometric series, and hence finally, after some 
elementary algebra, 

Ro = 1 z_ + 1 z_ z 2) (A.21) 
z_ z~ z _ ~  (z+~ + - 

Substituting (A.21) and (A. 22) in (A.9) gives 

2Jx , (T  ) = (z+ + 1)(1 - z+-z) /(z+ - 2)(z+ - z_) (A.22) 

Finally, substituting (A.8) for  z .  and simplifying, we obtain (79) of  the text, 
namely 

Jx~(T) = �89 -1 [ 1 - e- 'r(~ (A.23) 

with 

r (~)  = In z+ (A.24) 

To evaluate JX~.z(T), we first rewrite (A.2), using (A.3), in the form 

Jx~,z(T) = �89 - I2~(~b0)] (A.25) 

where 

1 f_ ~ cos mO 
I,~(4,0) = ~r .~o r + 2 - 2 cos 0 dO (A.26) 

This final integral again may  be t ransformed to a con tour  integral a round the 
unit  circle and evaluated as before. We find 

Im(~o) = (z+ m + z+-m)/(Z+ -- Z_)  (A.27) 

where z~ are given in (A.5). Substituting this result in (A.25) yields, on 
simplification, Eq. (74) of  the text, namely 

Jx~,z(T) = �89 + 4)-1/2[1 - e -2w(%)] (A.28) 

with F(~o) defined in (A.24). 
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A P P E N D I X  B. A S Y M P T O T I C  E V A L U A T I O N  OF L(x) 

In this appendix we analyze L(x),  defined in (139), in the limit n --> oo 
with x a positive constant. To do so, we make use of the relation [see (11)] 

fo L2(z) = L2(O) + W~.(z') dz'  (B.1) 

to write (139) as 

where 

xjr•2 
1 t L(x)  = L(O) + W~,.((~ ) d$' (B.2) 

~'0 

W~.n(O) = (l/n) ~ Wz(4, + ~ )  (B.3) 
r = O  

This sum has been analyzed by Barber and Fisher, C7~ who showed that as 
n --+ oo with q~ = x/n  2 [see BF, Eq. (4.66)] 

W~.,,(x/n 2) = W3(x/n 2) + [Wa• + [D31(x)/n] + O[Onn)/n 2] (B.4) 

where W3 • (z) is defined in (20) and 

Ds~(x) = [2x ~tz - In 4x - 2R~.o(x[~r 2 - 1)]/8zr (B.5) 

with R~,o(Z) a remnant function. Cl~ Substituting (B.4) in (B.2), and noting 
the recursion relation ~1~ 

fo R~+ 1.,(z) = dw R,,,~(w) (B.6) 

for remnant functions, we obtain 

L ( x )  = L(O) + L ~ ( x / n  2) - L3(O) + {[L3  ~(x /n  ~) - L~ ~ ( 0 ) I / n }  

+ { (4x3J2 /3 )  - x I n  4 x  + x - 2~2[R~,o(x /~  2 - 1) - R 2 , o ( - 1 ) l } / 8 , m  3 

+ O[(In n)[n 4] (B.7) 

where 

L3 • = L3(z) - �89 - �89 + 4) (B.8) 

From (B.1) and Table I we find for small z that 

L3(z) = L3(O) + W3(O)z - z3t~/6zr + O(z 2) 

L2(z) = L2(O) - [zOn z)/4zr] + [(5 In 2 + 1)z/4zr] + O(z 2 In z) (B.9) 
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so that (B.7) gives 

L(x) = L(O) + [xWa(O)/n 2] - [xOn n)]47rn a] + {[Wa(0) - 70n 2)/87r 

- � 8 9  - (~/4)[R2,o(X/~ 2 - l )  - R 2 , 0 ( - 1 ) ] } / n  ~ 

+ O[(/n n)/n'] (B.10) 

Finally, if we recall (26a), we obtain Eq. (148) of the text. 

NOTE ADDED IN PROOF 

It should be pointed out that recent Monte Carlo calculations by Binder 
and Hohenberg (to be published) on the surface layer magnetization of the 
d = 3 Ising model indicate that the exponent A1 has the value A 1 _~ 5/8, 
contradicting the assumption discussed above. The general scaling re/a- 
tions (a,~,11~ for surface exponents, however, appear to be valid. In addition, 
the recent calculations by Lubensky and Rubin (to be published) using the 
renormalization group and e-expansion techniques [K. G. Wilson, Phys. Rev. 
B4:3174, 3184 (1971); K. G. Wilson and M. E. Fisher, Phys. Rev. Letts. 28: 
240 (1972)] also predict that A1 does not possess a universal value. 
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